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Introduction

The phenomenon of peeling and debonding of thin layers is a subject of interest

to those concerned with adhesives, thin films, and layered materials. In recent years

much attention has been focused on such problems as a result of increased interest and

application of advanced composites and thin film coatings. (See for example ref. i.

An extensive list of references pertaining to the subject can be found therein.) A

related problem which is of interest for its own sake but also represents a simple

example of a tangled adhesive strip and of coplanar delamination interaction, is the

problem of a looped adhesive strip. This is the subject of the present study.

We consider here the problem of an elastic strip which possesses an adherend on

(at least) one of its surfaces. If the strip is deformed so that two portions of

such a surface are brought into contact, a portion of the strip becomes bonded and a

loop is formed (Figure I). We shall be interested in determining the equilibrium

configuration of such a strip and investigating the behavior of the strip when its

edges are pulled apart.

The problem shall be approached as a moving interior boundary problem in the

calculus of variations with the strip modeled as an inextensible elastica and the

bond strength characterized by its surface energy.* A Griffith type energy

criterion shall be employed for debonding, and solutions corresponding to the problem

of interest obtained. The solution obtained will be seen to predict the interesting

phenomenon of "bond point propagation", as well as the more standard peeling type

behavior. Numerical results demonstrating the phenomena of interest are presented as

well and will be seen to reveal both stable and unstable propagation of the boundaries

of the bonded portion of the strip, depending upon the loading conditions.

P

l

Figure i

*Bottega, W.J.: Peeling and Bond Point Propagation in a Self-Adhered Elastica.

To appear in Quart. J. Mech. and Appl. Math.
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Formulation of the Problem

Consider a thin elastic strip which possesses an adherend on one of its surfaces,

and let the strip be closed on itself in a symmetric manner such that there exists a

region in the plane of symmetry where the strip is bonded to itself (Figure I).

Additionally, let the edges of the strip be subjected to equal and opposite forces as

shown. As a result of the inherent symmetry of the problem, only half of the strip

need be considered in the ensuing analysis (Figure 2). The strip thus consists of a

lifted segment, a bonded segment, and a looped segment. In what follows, all length

scales have been normalized with respect to the half length, L, of the entire strip.

We shall identify each point on the centerline of the strip by its normalized arc

length, s, measured from the edge at which the external force is applied. In so doing,

the half strip will be divided into four regions; corresponding to the lifted segment

defined on 0 _ s _ a, a _ s _ b corresponding to the bonded segment , with the looped

segment of the strip divided into two regions, defined by b _ s _ s* preceding the

associated inflection point, s*, and s* _ s _ 1 following the inflection point. We

shall be interested in assessing the behavior of the above system as a function of the

magnitude of the applied load or the corresponding edge displacement.

Let us first define the right handed cartesian coordinate system (x,y) as shown

in the figure. In addition, let us define the angle 9(s) which measures the angle that

the tangent of the strip at point "s" makes with the x-axis as s increases (see Figure

2). One then may easily find the relations

x(s2)-X(Sl) = f:_ cos 0 ds and y(s 2) -y(s I) = fs_ 2 sin _ ds (i-a,b)

P

s=a s=b _

x

Figure 2
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Energy Functional

As we shall approach the problem as a moving interior boundary value problem in

the calculus of variations, we next define the energy functional _ given in Table I

where U (1) corresponds to the normalized strain energy of the segment of the strip

defined on the domain Di, and is seen to be comprised solely of bending energy as

the elastica is assumed to be inextensible. The strain energy of the (perfectly)

bonded segment of the strip, i.e., the portion of the strip on [a,b], is thus seen

to vanish identically. The functional W corresponds to the normalized work done by

the applied load. In that expression, P - PL2/D corresponds to the normalized

counterpart of the magnitude of the applied load, P, and D represents the bending

stiffness of the strip. The functional F corresponds to the "delamination energy"

where 7 - _L2/D represents the normalized counterpart of the surface energy of the

bond, _, while a 0 and b 0 correspond to the initial values of a and b respectively.

Finally, we introduce the constraint functional A, with Lagrange multiplier A,

which constrains the deflections of the segments of the strip on D 3 and D 4 to be

continuous at s = s*. The functions xa(s* ) and x4(s* ) may be expressed in terms of

8 by eq. (i-a). Thus,

s* i

A - I f b cos 0 ds + I f s* cos @ ds (2e')

We note that the inclusion of A is equivalent to treating the segments on D 3 and D 4

as separate structures and including the work done by the internal force A, at s - s*.

It may be seen that the line of action of this force must be parallel to the x-axis

as a result of the support condition at s - i (see Figure 2).

Table I

4

[1 = r. U (i)-w+r-^ (1)
i=l

where:

u(i)= j- l(do/ds)2ds
D.

1

(2a)

U (2) = 0 (2b)

a

W =-Px(o) = Pf cos0 ds
0

(2c)

r = 21,(a-a)- 2,(b-b) (2a)

^ =  [x3(s*) - x4(s*)] (20
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The Governing Equations

The governing differential equations, boundary conditions, matching conditions and
transversality conditions for the problem of interest are found by invoking the

principle of stationary potential energy as shown in Table 2 below. In equation (3),

the parameter 6 represents the variational operator.

The transversality conditions (7a,b,c) result from the moving boundaries during

peeling or bonding of the strip and thus are associated with equilibrium configurations

of the system during these processes.

The intermediate boundaries a, b and s*, as well as the inflection point angles

and _* are found as part of the solution to the problem.

Table 2

Principle of Stationary P.E.: 61] = 0

(1) into (3):

1 do i , 2
(_s-s) + Pi(c°sai-c°se i) = 0, (i = 1,3,4)

(3)

(4)

o 2 = _r/2

where: e l= 0--_- o , a 1= a-z0-(0) , P 1= P

(5)

02,3,4 = o , _,3,4 = a*= o(s*) , P3,4 = x

with B.C.s _nd M,C.s:

ol(a ) = o3(b ) = _r/2 , (6a,b)

and T.C.s:

1 d°l
G(a-) = _( _ _ s-a- = 2-_ (7a)

04(1 ) = 0 (6c)

o3(s* ) = o4(s* ) = _" (6d)

1 d°_2
G(b') = _(d--_s [ s=b += 2v (7b)

JSb coso ds = -f .cos o ds (6e)
d°4

ds Is=s*=dss Is=s*= 0 (7c)
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Criteria for Propagation of the "Bond Zone" Boundaries

The conditions (7a) and (7b) establish the bond zone boundaries during their

propagation and state that the values of a and b corresponding to equilibrium config-

urations of the system during propagation of each interior boundary are those for

which the bending energy densities at the point s - a- and s - b + are just balanced

by the energy of the bond. In this context the quantities G{a-I and G{b +} may be

identified as the "energy release rates" at the bond zone boundaries. The above

suggests the criteria for propagation of the boundaries of the bonded region of the

elastica, as listed in Tables 3a and 3b.

Peeling

If, for some initial a = ao, eqn. (8a) is satisfied, no peeling will occur and a

will remain at its initial value a o with the lifted segment bending away from the

plane of symmetry. If, for some initial a = ao, eqn. (8b) is satisfied, the lifted

segment of the strip peels away from the plane of symmetry such that the value of a

increases until the corresponding equality (7a) is satisfied.

Following the above reasoning, we conclude that for the loop to maintain its

initial configuration, conditions must be such that eqn. (ga) is satisfied. If

eqn. (9b) holds, the loop would open as a result of excess bending energy at its

edge, with b taking on smaller values until the energy of deformation is just

balanced by the energy of the bond.

Peeling:
v

If G{a-o} < 2_

If G{a-o} > 2v

Table 3a

Criteria for Propagation
of Bond Zone Boundaries:

No Peeling

Peeling until a
satisfies equality (7a)

(8a)

(8b)

Similarly,

If G{b. ÷} < 2_ Loop maintains initial
configuration

(9a)

If G{b,,*} > 2-t Loop grows (b decreases

until b satisfies equality (7b) (9b)
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Bond Point Propagation

If conditions are such that the bending energy G{a-} is sufficiently large while

G{bo +} is sufficiently small, the bond zone boundary "a" will increase while b remains

at its initial value until a - b-. At this stage, as the resultant bending moment

mba acting at the bond point satisfies eqn (I0) (Table-3b), and hence acts in a

clockwise sense, tending to rotate the strip in this sense, while simultaneously

there exists a sufficient surplus of bond energy to counter the bending energy of the

loop and induce bonding at the loop edge, the strip behaves locally as if rolling

over its counterpart and the "bond point" s _ a - b will propagate such that the loop

closes and shrinks until the corresponding equality (7b) is satisfied. At this point

the surplus bond energy is depleted and bonding at s = b + can no longer occur.

Equivalently, the growth condition (9b) as well as (8b) will become satisfied and

conditions will then be such that propagation can occur in both directions simul-

taneously. Under such conditions, the loop will expire and the strip will separate

completely.

Table 3b

"BOND POINT PROPAGATION":

If (9a) and (8b) satisfied, a -, b

Resultant Bending Moment:

mba = [[do/ds]] s=b = [do/dS]s=b.

(thus, mbaiS clockwise)

- [do/dS]s=b_ < 0 (10)

Thus, "bond point" propagates until equality (7b) satisfied

and loop expires.
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Basic Integrals

The nonlinear differential equations (4) governing the local rotations on each

segment of the strip are seen to be of standard form, which upon solving for ds,

integrating over the corresponding domain, and using the transformation given by (ii),

results in expressions for the segment arc lengths _i (i-1,3,4) in terms of the

inflection point angles and corresponding external or internal loads as given in

Table 4. We note that these lengths will vary as a result of bonding and debonding.

The functionals F(q,_) and Fk(q) in eqns. (12) correspond to elliptic integrals of

the first kind and complete elliptic integrals of the first kind, respectively,

defined by

d_ i

F(qi'_) " f o and Fk(qi ) - F(qi,_/2) (ii-a,b)

/l-qi2sin2_ i

We shall first consider equilibrium configurations of the lifted segment

(86DI) and of the looped segment (86D3+D4) separately, and then examine their
interaction.

Table 4

BASIC INTEGRALS

Transformation:

sin(8 i/2) = qi sin 4, i (lla)

qi = sin (ai/2) (i = 1,3,4) (llb)

(11) into (4), solving for ds and integrating =

segment arc lengths t i :

t 1 = a = [Fl_ql) - F(ql,.1)/]_-- (12a)

t3= s* - b = [Fk(q* ) - F(q*,'3)]/S (12b)

t 4 = l-s* = Fk(q*)/fx (12c)

where q 3 = q4 = q_ (13a)

" -1 if_) } (13b)t i = sin {1/(q

F(q,_) - Elliptic Integral of 1st Kind

Fk(qi ) - Complete E.I. of 1st Kind
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Behavior of the Lifted Region

The deflection of the edge of the strip at which the load is applied is found

by solving equation (4a) for d01/ds and substituting the resulting expression into

equation (i-a), with appropriate limits of integration. Then, upon incorporating

the transformation (13), we obtain the load edge deflection, Ao, as given in Table 5,

where

E(qi'_) = _o Jl-qi2sin2_i d_i and Ek(qi ) _ E(qi,_/2 ) , (iii-a,b)

correspond to elliptic integrals of the second kind, and complete elliptic integrals

of the second kind, respectively. The explicit form of the transversality condition

at the "trailing edge" of the bonded region (i.e., at s = a) may be found by solving

equation (4a) for [d#Jds]s= a and substituting the resulting expression into (7a).

We then have the condition which (implicitly) defines the location of the trailing

edge of the "bond zone", during peeling, given by eqn. (15).

Substitution of equation (15) into equation (12), with i = I, and equation (14)

gives explicit relations for the magnitude of the applied load as a function of "a"

and the normalized load point deflection as a function of "a" respectively, with the

load point rotation _ a parameter. Specific results corresponding to selected values

of _ will be presented in a later section.

Table 5

BEHAVIOR OF LIFTED REGION

LOAD POINT DEFLECTION:

,',, A

- -xl = ----1{[2E(q 1,tl) - F(ql,t 1)1A O S=O
,/P

- [2Ek(ql)- Fk (ql)l} (14)

where E(q,M ~ Elliptical Integral of 2nd Kind

Ek( q i) ~ Complete E.I. of 2nd Kind

T.C. @ s = a- (7a) becomes

P = -2_/cos _, (_/2 < _, ___,) (15)
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Equilibrium Configurations of the Loop

The angle which measures the rotation of the tangent of the loop at its

inflection point s - s* is found by imposing the condition (6e). Thus, solving

equations (4b) and (4c) for d0/ds, substituting the resulting expressions into the

left and right hand sides of (6e) respectively, noting (6d) and incorporating the

transformation (ii) for i - 3,4 we obtain the condition given by (16) below where

as defined earlier, _* - _3 - _4 and q* _ q3 " q4. It may be seen from equation

(16) that _* is independent of the size of the loop, of the material and geometric

properties of the strip and bond, and of the magnitude of the applied load, and

thus is a "characteristic angle" of the problem. Equation (16) may be solved

numerically to yield the value of _* as given below.

The total (half) arc length of the loop, _, is simply comprised of the sum

of the lengths Of its constituent segments. Thus, adding equations (12b) and

(12c) yields the relation for _, given by (18). The relative portions of the loop

corresponding to its constituent segments are then found by dividing eqns.(12b)

and (12c) by (18). We thus have

and

_3/_ - [Fk(q* ) F(q*,_*)]/[2Fk(q* ) - F(q*,_*)]

24/_ - F_(q*)/[2Fk(q*) F(q*,_*)] ,

(19a')

(19b')

which are seen to correspond to "characteristic length ratios" of the problem. The

above ratios may be evaluated, using the computed value of _*, to yield the values

given at the bottom of Table 6.

Table 6

EQUILIBRIUM CONFIGURATIONS OF THE LOOP

Imposing (6e):

2[2Ek(q" ) - Vk(q')] = 2E(q', e')- F(q*, e')

A ^

(where i* = t 3 = 14).

(16)

Solving (16) yields "characteristic angle" of inflection point

,,* = 117.54" (for any loop size and

mat'l./geom, props.) (17)

(12b) + (12c) _ loop (hal0 arc length t:

t = _3 + t4 = [2Fk(q*)- F(q*, e')]/,/_- (18)

(12b,c)/(18) = "Characteristic Arc Length Ratios":

t3/t = 0.3254 and t4/t = 0.6746

(for any loop size and mat'l./geom, props.)

(19a,b)
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Debonding of the Looped Segment

We may next consider equilibrium configurations of the looped segment of the strip

as it opens (debonds) by evaluating the explicit form of the transversality condition

at s - b ÷ in a manner analogous to that done earlier for the lifted segment. Doing so

we find that during opening of the loop, the condition (7b) takes the form given by

eq'n.(20) where _* is given by (17). Since, as discussed earlier, a* is a "character-

istic angle" (i.e., it maintains a fixed value for any equilibrium configuration of the

loop,) it is seen from the above expression that the internal force A maintains a

constant value during debonding of the loop.

Substitution of (20) into equation (18) yields a critical value of the loop length

given by equation (21) below, with the inequalities (9a,b) now interpreted in terms of

the arc length of the loop; e.g. - (22a,b).

It may be noted that a minimum value of the normalized bond energy is required for

the elastica to remain adhered to itself. This value 7 - 7mln corresponds to the

limiting case where the loop traverses the entire strip and is in self-contact only at

the loading edge s = 0 (i.e., it corresponds to the limiting case when _=r - I). Upon

employing the result (19) we find the desired value given below. Adherends whose

normalized bond energies possess magnitudes which are below this value are thus not

"strong enough" to maintain a self-adhered configuration.

T.C. @ s = b

Table 7

+
(7b) becomes:

= -2-_/cos ,,* (= constant for given -y) (20)

(20) into (18):

t = [2Vl_q* ) - V(q*, **)lJ(-cos=*)/2_ (21)

Ift>_
cr

No debonding of loop occurs (22a)

Ift <a
cr

Debonding of loop occurs

t increases (b decreases) until _ =
cr

(22b)

l
cr

=1_ v = _min -- 2.292 (23)
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Effective Bond Strength and Propagation Behavior

A plot of 2or versus 7 is displayed in Figure 3. It may be observed from the

figure that the amount of "effective bond strength" gained, as measured by the relative

decrease in 2or , significantly decreases as 7 is increased beyond 200.

Peeling and Bond Point Propagation

The above solution offers the following scenario for a looped adhesive strip with

given 7 > 7mln existing in an initial configuration such that 2o m l_bo > _=r (or

equivalently b o < b=r - l-2cr), with an initial lift zone size of 21 - a o. As P is

increased the corresponding value of _i = _ is increased according to equation (12a),

with the associated deflection A o varied according to equation (14). This process is

continued until equation (15) is satisfied at which point peeling begins with the

"trailing edge" of the "bond zone" s = a propagating (and 21 increasing). As the

initial loop length 2 o is larger than the critical length, the loop edge boundary of

the bond zone remains at its initial value until a = b o. At this point if conditions

are such (equation (15) satisfied) that peeling continues, the bond point a = b

propagates with 2 decreasing (b increasing). During this phase the values of _*,

_3/2, and 2_/_ maintain the values given by (17) and (19a,b) respectively. The loop

thus shrinks in size during this phase, with its geometry evolving through successive

self-similar shapes (as if the strip were being pulled through a rigid clamp at s - b).

This process continues until _ - _cr, at which point conditions are such that peeling

may occur at both s = b- and s - b + (i.e., in both directions) simultaneously. At

this instant the loop is terminated and the surfaces on each side of the plane of

symmetry separate. Results corresponding to specific values of 7 are presented

next.

05

t o ,, iL
i
i

ILi

o.o_ ........... 25 5'o

, i

Fig. 3. Variation of Critical Loop (Half) Length with Normalized Bond Energy
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Numerical Results

Results are presented corresponding to selected values of the normalized bond

energy. Specifically, we consider the strip/adherend systems whose material and

geometric properties are characterized by the values 7 - 5, i0, 50, i00, and i000

respectively.

The projections of the associated lift zone/bond point "propagation paths"

in the Ao-a, P-a and P-A o spaces are calculated and are displayed in Figures 4-7.

Each curve is terminated at the critical values a - bcr _ l-2cr, which are given

by the values bcr - .3230, .5213, .7859, .8486, and .9522 for the respective values

of 7 considered. The prepropagation load-deflection behavior of lift zone segments

corresponding to initial lengths of a o = 0.25 and a o 0.50 are also displayed in

Figure 6. Finally, the variation of the magnitude of the internal force _, as a

function of the loop length 2, is displayed in Figure 8.

It may be seen from the figures that propagation of the lift zone boundary or

bond point occurs in a stable manner for a deflection controlled test, and in an

unstable and "catastrophic" manner for a force controlled test. The following example

illustrates the general behavior of the self-adhered elastica.

1.0

J
t

J
! o

Fig. 4. Lift Zone/Bond Point Propagation Paths (7 - 5, i0, 50, i00, i000):

Load Edge Deflection vs. Bond Zone Boundary
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Let us consider a strip/adherend combination with 7 - 50 which is initially

configured such that ao - 0.25 and bo = 0.60. It may be observed that a system

characterized by one of the smaller values of 7 considered could not maintain a loop

size this small (bo this large) and that for such a system the loop edge boundary, b,

would immediately decrease to its corresponding critical value. Returning to the

previously defined case (7 - 50), the system initially follows the prepropagation

path for ao - 0.25 in Figure 6, as P and 4o increase from the origin. During this

phase, the system simultaneously follows a purely vertical path, corresponding to

a = 0.25, in the 4o-a and P-a spaces (Figures 4 and 5). The system continues to behave

in this fashion until the propagation path corresponding to 7 - 50 is intercepted.

At this point the lifted segment of the strip has accumulated enough bending energy at

the bond zone boundary s = a-, for the lift zone to propagate. We note that as

_o > _cr (bo < bet) the bending energy of the looped segment at s = b+ is insufficient

for propagation so b remains at its initial value. Let us first consider the case

where the load edge deflection, Ao, is controlled. For this case, as 4o is

incrementally increased, a increases incrementally following the corresponding path

in Figure 4. The corresponding values of P may be observed, from Figs. 5 and 6, to

decrease accordingly. This process continues, with the strip peeling from its

symmetric counterpart in a stable manner, until a = b o. At this point the bending

energy of the loop at s - b+ is still sufficiently low as to maintain the bond,

while that at s - b- is large enough to permit debonding. As 4o is increased

further, the bond point s - a - b then propagates in a stable manner, with the loop

shrinking through a series of self-similar shapes until _ = _cr, at which point

sufficient bending energy exists on both sides of the bond point and the strip

separates. For the case where P rather than 4 o is controlled, the system behaves

8O

Fig. 5.

20O

--- :, = 100

_, : 50

- 7 = /0

7 = 5

Lift Zone/Bond Point Propagation Paths (7 - 5, i0, 50, I00):

Applied Load vs. Bond Zone Boundary
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in an analogous manner except that all behavior during the propagation phases occur in

an unstable manner. Thus, for this case the process of complete separation of the

elastica is initiated as soon as P reaches a critical value.

The phenomena described above may be observed by simply closing a piece of

adhesive tape on itself, thus forming a loop, and then peeling the edges apart. Such

an "experiment" would correspond to a deflection controlled test, with the normalized

bond energy characterizing the tape observed to be at the upper end of the range

of values considered in the numerical simulations presented herein.

400

Fig. 6.

300

tOO

-- 7 = 100

- 7 = 50

..... 7 = fO

.... 7 = 5

_0 = O. 25 a 0 = O. 50

\
\

AO

Prepropagation and Lift Zone/Bond Point Propagation Paths (V = 5, i0,

50, I00): Applied Load vs. Load Edge Deflection
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